Thermochimica Acta, 25 (1978) 117-121 © Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands

NICKEL(II) MOLYBDATE (NiMoO4) AS METHANATION CATALYSTS. $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal$

 $\mathcal{L}(\mathcal{I},\mathcal{I},\mathcal{I},\mathcal{I}) = \mathcal{I}(\mathcal{I},\mathcal{I},\mathcal{I},\mathcal{I},\mathcal{I},\mathcal{I},\mathcal{I}) = \mathcal{I}(\mathcal{I},\mathcal{I},\mathcal{I},\mathcal{I},\mathcal{I},\mathcal{I})$

Contract Service State

 (1)

M. RAMCHANDRA REDDY, R. A. GEANANGEL AND W. W. WENDLANDT Department of Chemistry, University of Houston, Houston, Texas 77004 (U.S.A.) (Received 18 September 1977) **September** 1977

ABSTRACT

Three NiMoO₄ catalysts, on Al_2O_3 and $SiO_2-Al_2O_3$ supports, were evaluated for use as methanation catalysts using the DTA technique. All three catalysts were effective for the methanation reaction, although they rapidly developed carbon deposits at the H_2 : CO ratios and flow-rates employed.

INTRODUCTION

One of the most important problems for large scale solar energy utilization is the development of a suitable energy transmission system from the solar energy collector to a suitable electric power generator or storage facility. Of the many energy transmission systems proposed, the cyclic catalytic reaction of methane (CH_A) and steam merits further investigation¹. This system is based upon the reaction:

cata.I $CH_4(g) + H_2O(g) \Rightarrow CO(g) + 3H_2(g)$ $cata₁H$

The reaction from left to right is the well known "reforming" reaction while that from right to left is part of the Fischer-Tropsch system, or more specifically, the methanation reaction. Both reactions are well known from an industrial viewpoint, although new catalysts, such as catalysts I and II, are constantly being evaluated.

Of interest here is the use of nickel molybdate (NIMoO_{a}) catalysts for the methanation reaction. In order to evaluate these catalysts, a DTA method was employed which permitted a rapid screening procedure, plus some measure of the usefulness of the catalyst for the methanation reaction. The use of DTA and DSC for the evaluation of methanation catalysts has been discussed by Beecroft et al.², and the procedure used here is similar to the one that those authors employed. Three catalysts were evaluated: two catalysts were NiMoO₄ on an Al₂O₃-SiO₂ support and one was NiMoO₄ on an AI_2O_3 support.

EXPERIMENTAL

Catalysts

The **three catalysts used were obtained from the Climax Molybdenum Co., Ann Arbor, MI. Their composition and specifications were as follows:**

(a) NiMoO_s on Al₂O₃; Lot No. 1104-110; 169 m² g⁻¹ surface area; Harshaw **AL-IMP support; 9.5% MO, 5.9% Ni, NiJMo = 0.986: I.**

(b) NiMoO₁ on A1₂O₃-SiO₂; Lot No. 1120-135; 159 m² g⁻¹ surface area; Harshaw AL-1602T support (1/8 in. tablets), 91% Al₂O₃-6% SiO₂; 8.54% Mo, 5.15% Ni, Ni/Mo = 0.986: 1.

(c) NiMoO, on AI,O,-SiO,: Lot No. 1164-33; II3 m' g-' surface area; Harshaw AL-1605P support, 91% Al₂O₃-6% SiO₂; 21.0% Mo, 11.7% Ni, Ni/Mo = **0.915 1.**

DT.. *appararus*

The DTA apparatus was conventional in design³. It used small stainless-steel **cups to contain the sampk and reference materials with sensing thermocouples** *spot-we!ded to the* **base of each cup. A heating rate of 10°C min-' was empioyed and the variable _efiow rate and mixing were controlled by a Matheson R7 300 Series** gas proportioner. The ratios of gas-flow rates of H₂: CO used were 1:1, 1:2, and 2:1. Many other flow-rates were evaluated but only those listed above are reported here. The hydrogen and carbon monoxide gases were obtained directly from cylinders and were not subjected to purification. After passing through the gas proportioner, the **gas mixtures entered the top of the furnace chamber and were inmediateIy in contact with the sample and reference materials. The eflluent gases excited at the bottom of the** furnace chamber and were exhausted to the atmosphere.

RESULTS AND DISCUSSION

The rate of the methanation reaction, r, has been discussed by Beecroft et aI_' using DSC parameters Using a similar approach, but substituting DTA parameters, the rate of the methanation reaction at temperature T is proportional to $R(dH/dT)$. The term, R(dH/dT), is the expression for the instantaneous rate of heat generation⁴, **and is given by the" equation:**

$$
R\left(\frac{dH}{dt}\right) = (T_s - T_s) + R(C_s - C_r) + RC_s d \frac{(T_s - T_s)}{dt}
$$

where T_s is the sample (and container) temperature; T_r is the reference (and container) temperature; C_s and C_r are the heat capacities of the sample and reference, respectively; dT_d/dt is the beating rate; and R is a constant. The rate, F_T , is given by:

 \mathbb{R}^2

$$
r_T = -\left(\frac{dP_{CD}}{dt}\right)_T = a\left[R\left(\frac{dH}{dt}\right)\right]_T
$$

where a is a constant. The rate of reaction is given by the rate expression:

$$
r = -\left(\frac{\mathrm{d}P_{\mathrm{co}}}{\mathrm{d}t}\right) = K P_{\mathrm{CO}}^* P_{\mathrm{H}_2}^* \exp\left(-E/RT\right)
$$

Experiments were carried out² with various partial pressures of CO and H_2 at **differential** Bow-rates. **From these data, Arrhenius plots could be made for the various catalysts used in the metharation reaction. No activation energies, E, however, were reported.**

The **DTA curves for the three catalysts used in these investigations are given in Figs. 1-3.**

All of the DTA curves showed that NiMoO₄ catalyzed the methanation **reaction, as given in eqn. (1). Since the reaction is highly exothermic,** $AH_{500} = -218$ kJ mole^{-1}, all of the curve peaks are exothermic and are very large in magnitude. The initial deviation from the baseline varies with change in composition $(H_2:CO \text{ ratio})$, **fiow-rate and composition of the catalyst. Also, the curve peak maxima vary with the same parameters. They tend to be largest with the greatest flow-rate but there are** some exceptions, for example, NiMoO₄ on Al₂O₃-SiO₂ (Lot No. 1120-135) (see **Fig. 1;.**

The initial curve deviations (T_i) and peak maxima temperatures $(4T_m)$ are listed in Table 1. As shown by the data, the T_i values tend to decrease with an increase

Fig. 1. Methanation reaction on NiMoO₄ (Al₂O₂-SiO₂) catalyst (Lot no. 1120-135). (A) 10:10 ml min^{-1} ; (B) 20:20 ml min⁻¹; (C) 30:30 ml min⁻¹; (D) 40:40 ml min⁻¹; (E) 50:50 ml min⁻¹; (H₂:CO).

Fig. 2. Methanation reaction on NiMoO₄ (Al₂O₃) catalyst (Lot no. 1104-110). (A) 10:20 ml \min ⁻¹; **(B)** 20:40 ml min⁻¹; **(C)** 30:60 ml min⁻¹; **(D)** 40:80 ml min⁻¹; **(H₃**: CO).

Fig. 3. Methanation reaction on NiMoO₄ (SiO₁-Al₁O₂) (Lot no. 1164-33). (A) 20:10 ml min⁻¹; (B) 40:20 ml min⁻¹; (C) 60:30 ml min⁻¹; (D) 80:40 ml min⁻¹; (H₂:CO).

TABLE I

CATALYST T_i and ΔT_m values

 \bullet T_1 temperatures. ΔT_m temperatures. $\mathcal{L}_{\mathbf{r}}$

 \mathbf{r}

 $\mathcal{L}^{\mathcal{L}}$

 $\ddot{}$

 $\ddot{}$

Fig. 4. Flow-rate for NiMoO₄ on Al₂O₃ (Lot No. 1104-110).

in flow-rate for each H₂: CO ratio and catalyst composition. The same appears to be true in the case of AT_m values.

The complicating factor with all of the catalyst composition and H_2 :CO **ratios was the deposition of carbon. All of the catalysts were black in color at the termination of the DTA run, which necessitated the use of fresh catalyst for each run.** Unless a specific H_2 : CO or flow-rate would prevent the carbon formation, the catalysts would not be very effective in cyclic catalytic systems, such as that illustrated **in eqn_ (1)**

The effect of flow-rate of the reactant gases on the $(T_s - T_t)$ values for one of the catalysts is given in Fig. 4. The catalyst, Lot No. 1104-110, gave straight line plots **for the temperatures indicated, which can be extrapolated to zero flow-rate_ The zero** flow-rate data can be used to obtain E values² but the values obtained here did not **yield a suitable Arrhenius plot.**

ACKXOWLEDGMENTS

The fmancial assistance of the Solar Energy Laboratory, University of Houston, is gratefully acknowledged. We thank Dr. R. A. Ferrence, of Climax Molybdenum Co., for the catalyst sampks.

REFERENCES

- **R.** E Hannetnan, Ii. **Vakil and R_ H. Wcntorf, Pmc** *9th Inrersociefy fiergy Corn.. fig. (IECEC), 749-035, San* **Fm.uisa~, 1974, p. 433.**
- 2 T. Beecroft, A. W. Miller and J. R. H. Ross, *J. Catal.*, 40 (1975) 281.
- 3 W. W. Wendlandt, Thermal Methods of Analysis, Wiley-Interscience, New York, 1964, p. 211.
- 4 A. P. Gray, in R. F. Porter and J. M. Johnson (Eds.), *Analytical Calorimetry*, Plenum, New York, 1968. **p- 209.**